Mapping Part-Whole Hierarchies into Connectionist Networks

نویسنده

  • Geoffrey E. Hinton
چکیده

Three different ways of mapping part-whole hierarchies into connectionist networks are described. The simplest scheme uses a fixed mapping and is inadequate for most tasks because it fails to share units and connections between different pieces of the part-whole hierarchy. Two alternative schemes are described, each of which involves a different method of time-sharing connections and units. The scheme we finally arrive at suggests that neural networks have two quite different methods for performing inference. Simple "intuitive" inferences can be performed by a single settling of a network without changing the way in which the world is mapped into the network. More complex "rational" inferences involve a sequence of such settlings with mapping changes after each settling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational modeling of dynamic decision making using connectionist networks

In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...

متن کامل

Hierarchies of neural networks for connectionist speech recognition

We present a principled framework for context-dependent hierarchical connectionist HMM speech recognition. Based on a divideand-conquer strategy, our approach uses an Agglomerative Clustering algorithm based on Information Divergence (ACID) to automatically design a soft classi er tree for an arbitrary large number of HMM states. Nodes in the classi er tree are instantiated with small estimator...

متن کامل

ACID/HNN: clustering hierarchies of neural networks for context-dependent connectionist acoustic modeling

We present the ACID/HNN framework, a principled approach to hierarchical connectionist acoustic modeling in large vocabulary conversational speech recognition (LVCSR). Our approach consists of an Agglomerative Clustering algorithm based on Information Divergence (ACID) to automatically design and robustly estimate Hierarchies of Neural Networks (HNN) for arbitrarily large sets of context-depend...

متن کامل

Connectionist Learning Classifier System

Impetuous development of artificial neural networks makes it possible to transfer many ideas from this area into adjacent areas. This work investigates an opportunity of mapping learning classifier systems (LCS) into artificial neural networks (ANN). Possible learning types for hybrid connectionist classifier system (CLCS) for multi-step problems are derived. Transformation’s opportunity of the...

متن کامل

Generation, Local Receptive Fields and Global Convergence Improve Perceptual Learning in Connectionist Networks

This paper presents and compares results for three types of connectionist networks on perceptual learning tasks: [A] Multi-layered converging networks of neuron-like units, with each unit connected to a small randomly chosen subset of units in the adjacent layers, that learn by re-weighting of their links; [B] Networks of neuron-like units structured into successively larger modules under brain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 1990